skip to main content


Search for: All records

Creators/Authors contains: "Hess, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Earth System Models (ESMs) have implemented nitrogen (N) cycles to account for N limitation on terrestrial carbon uptake. However, representing inputs, losses and recycling of N in ESMs is challenging. Here, we use global rates and ratios of key soil N fluxes, including nitrification, denitrification, mineralization, leaching, immobilization and plant uptake (both NH4+ and NO3-), from the literature to evaluate the N cycles in the land model components of two ESMs. The two land models evaluated here, ELMv1-ECA and CLM5.0, originated from a common model but have diverged in their representation of plant/microbe competition for soil N. The models predict similar global rates of gross primary productivity (GPP) but have ~2 to 3-fold differences in their underlying global mineralization, immobilization, plant N uptake, nitrification and denitrification fluxes. Both models dramatically underestimate the immobilization of NO3- by soil bacteria compared to literature values and predict dominance of plant uptake by a single form of mineral nitrogen (NO3- for ELM, with regional exceptions, and NH4+ for CLM5.0). CLM5.0 strongly underestimates the global ratio of gross nitrification:gross mineralization and both models likely substantially underestimate the ratio of nitrification:denitrification. Few experimental data exist to evaluate this last ratio, in part because nitrification and denitrification are quantified with different techniques and because denitrification fluxes are difficult to measure at all. More observational constraints on soil nitrogen fluxes like nitrification and denitrification, as well as greater scrutiny of the functional impact of introducing separate NH4+ and NO3- pools into ESMs, could help improve confidence in present and future simulations of N limitation on the carbon cycle. 
    more » « less
  2. Abstract. To better understand the role of atmospheric dynamics in modulating surface concentrations of fine particulate matter (PM2.5), we relate the anticyclonic wave activity (AWA) metric and PM2.5 data from the Interagency Monitoring of Protected Visual Environment (IMPROVE) data for the period of 1988–2014 over the US. The observational results are compared with hindcast simulations over the past 2 decades using the National Center for Atmospheric Research–Community Earth System Model (NCAR CESM). We find that PM2.5 is positively correlated (up to R=0.65) with AWA changes close to the observing sites using regression analysis. The composite AWA for high-aerosol days (all daily PM2.5 above the 90th percentile) shows a similarly strong correlation between PM2.5 and AWA. The most prominent correlation occurs in the Midwestern US. Furthermore, the higher quantiles of PM2.5 levels are more sensitive to the changes in AWA. For example, we find that the averaged sensitivity of the 90th-percentile PM2.5 to changes in AWA is approximately 3 times as strong as the sensitivity of 10th-percentile PM2.5 at one site (Arendtsville, Pennsylvania; 39.92∘ N, 77.31∘ W). The higher values of the 90th percentile compared to the 50th percentile in quantile regression slopes are most prominent over the northeastern US. In addition, future changes in US PM2.5 based only on changes in climate are estimated to increase PM2.5 concentrations due to increased AWA in summer over areas where PM2.5 variations are dominated by meteorological changes, especially over the western US. Changes between current and future climates in AWA can explain up to 75 % of PM2.5 variability using a linear regression model. Our analysis indicates that higher PM2.5 concentrations occur when a positive AWA anomaly is prominent, which could be critical for understanding how pollutants respond to changing atmospheric circulation as well as for developing robust pollution projections. 
    more » « less
  3. Abstract

    This article focuses on the implications of the recently developed commutative formulation based on branch‐cutting cosmology, the Wheeler–DeWitt equation, and Hořava–Lifshitz quantum gravity. Assuming a mini‐superspace of variables, we explore the impact of an inflaton‐type scalar field on the dynamical equations that describe the trajectories evolution of the scale factor of the Universe, characterized by the dimensionless helix‐like function . This scale factor characterizes a Riemannian foliated spacetime that topologically overcomes the big bang and big crunch singularities. Taking the Hořava–Lifshitz action as our starting point, which depends on the scalar curvature of the branched Universe and its derivatives, with running coupling constants denoted as , the commutative quantum gravity approach preserves the diffeomorphism property of General Relativity, maintaining compatibility with the Arnowitt–Deser–Misner formalism. We investigate both chaotic and nonchaotic inflationary scenarios, demonstrating the sensitivity of the branch‐cut Universe's dynamics to initial conditions and parameterizations of primordial matter content. The results suggest a continuous connection of Riemann surfaces, overcoming primordial singularities and exhibiting diverse evolutionary behaviors, from big crunch to moderate acceleration.

     
    more » « less
  4. Abstract

    This paper focuses on the implications of a commutative formulation that integrates branch‐cutting cosmology, the Wheeler–DeWitt equation, and Hořava–Lifshitz quantum gravity. Building on a mini‐superspace structure, we explore the impact of an inflaton‐type scalar field on the wave function of the Universe. Specifically analyzing the dynamical solutions of branch‐cut gravity within a mini‐superspace framework, we emphasize the scalar field's influence on the evolution of the evolution of the wave function of the Universe. Our research unveils a helix‐like function that characterizes a topologically foliated spacetime structure. The starting point is the Hořava–Lifshitz action, which depends on the scalar curvature of the branched Universe and its derivatives, with running coupling constants denoted as . The corresponding wave equations are derived and are resolved. The commutative quantum gravity approach preserves the diffeomorphism property of General Relativity, maintaining compatibility with the Arnowitt–Deser–Misner formalism. Additionally, we delve into a mini‐superspace of variables, incorporating scalar‐inflaton fields and exploring inflationary models, particularly chaotic and nonchaotic scenarios. We obtained solutions for the wave equations without recurring to numerical approximations.

     
    more » « less
  5. Microbial biomass is known to decrease with soil drying and to increase after rewetting due to physiological assimilation and substrate limitation under fluctuating moisture conditions, but how the effects of moisture changes vary between dry and wet environments is unclear. Here, we conducted a meta‐analysis to assess the effects of elevated and reduced soil moisture on microbial biomass carbon (MBC) and nitrogen (MBN) across a broad range of forest sites between dry and wet regions. We found that the influence of both elevated and reduced soil moisture on MBC and MBN concentrations in forest soils was greater in dry than in wet regions. The influence of altered soil moisture on MBC and MBN concentrations increased significantly with the manipulation intensity but decreased with the length of experimental period, with a dramatic increase observed under a very short‐term precipitation pulse. Moisture effect did not differ between coarse‐ and fine‐textured soils. Precipitation intensity, experimental duration, and site standardized precipitation index (dry or wet climate) were more important than edaphic factors (i.e., initial water content, bulk density, clay content) in determining microbial biomass in response to altered moisture in forest soils. Different responses of microbial biomass in forest soils between dry and wet regions should be incorporated into models to evaluate how changes in the amount, timing and intensity of precipitation affect soil biogeochemical processes. 
    more » « less
  6. Abstract

    While carbon dioxide emissions from energy use must be the primary target of climate change mitigation efforts, land use and land cover change (LULCC) also represent an important source of climate forcing. In this study we compute time series of global surface temperature change separately for LULCC and non-LULCC sources (primarily fossil fuel burning), and show that because of the extra warming associated with the co-emission of methane and nitrous oxide with LULCC carbon dioxide emissions, and a co-emission of cooling aerosols with non-LULCC emissions of carbon dioxide, the linear relationship between cumulative carbon dioxide emissions and temperature has a two-fold higher slope for LULCC than for non-LULCC activities. Moreover, projections used in the Intergovernmental Panel on Climate Change (IPCC) for the rate of tropical land conversion in the future are relatively low compared to contemporary observations, suggesting that the future projections of land conversion used in the IPCC may underestimate potential impacts of LULCC. By including a ‘business as usual’ future LULCC scenario for tropical deforestation, we find that even if all non-LULCC emissions are switched off in 2015, it is likely that 1.5 °C of warming relative to the preindustrial era will occur by 2100. Thus, policies to reduce LULCC emissions must remain a high priority if we are to achieve the low to medium temperature change targets proposed as a part of the Paris Agreement. Future studies using integrated assessment models and other climate simulations should include more realistic deforestation rates and the integration of policy that would reduce LULCC emissions.

     
    more » « less